Substorm impacts on inner magnetosphere convection

R. A. Greenwald¹, J. M. Ruohoniemi¹, J. B. Baker¹, and M. Lester², E. Talaat³, R. Barnes³

¹ Department of Electrical and Computer Engineering Virginia Tech Blacksburg, VA, 24060, USA <u>ray.greenwald@vt.edu</u>

² Department of Physics University of Leicester Leicester, LE1 7RH, UK
³JHU/APL Laurel, MD 20723, USA

Questions???

- How do substorms affect inner magnetosphere convection?
 - Do substorms contribute to penetration electric fields?
 - What types of velocity changes occur?
 - What is the local time extent of the effects?
 - What are the time delays?
 - What is their duration?
- Effects most likely be observed in the nighttime ionosphere.
- We may need to differentiate ground scatter from low velocity ionospheric scatter.
- We examine two events identified with magnetic and/or optical data.

The Quiescent State - Daytime

The Quiescent State - Nighttime

Nighttime Scatter Ground-Scatter Flag Off

Case 1: March 27, 2008 GOES 12 Magnetometer Data

Case 1: Gillam All-Sky Camera Images

Case 1: Churchill Chain Magnetometers

CGSM/Magnetometer

Geodetic data

Blackstone Nighttime Observations During Minor Storm (Kp=5)

Sequence of Four Scans of Blackstone Radar

Case 2: Magnetic Observations on April 25, 2008 Kp=3

Case 2: Magnetic Data From Greenland Chain

Wallops and Blackstone Time Series April 25, 2008

Blackstone/Wallops View of Plasma Flow Bursts Across North America

Summary

- We have examined two substorms identified by their magnetic and optical signatures.
- The Wallops and Blackstone radars observe enhanced plasma flows in the nighttime subauroral ionosphere ~5-10 minutes after substorm onset.
- Enhanced flows endured throughout the expansion phase.
- Substorm injections presumably modify pressure gradients in inner magnetosphere leading to inner magnetosphere electric fields and plasma convection.
- These transient flow enhancements are a common feature of subauroral plasma convection and occur over a wide range of magnetospheric disturbance levels.