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Abstract

Recent studies revealed that ionospheric ExB drift velocity estimates
derived from SuperDARN Doppler shift data are on average by 25%
smaller than those measured simultaneously by DMSP satellites
positioned on the same field line. The 500-km altitude shift from the
effective scattering volume to the satellite position leads to an 11-%
increase in the E/B ratio, but this only accounts for less than a half of
the observed effect. While the SuperDARN data processing algorithms
assume that HF scatter occurs 1n a free space, our theoretical
calculations and numerical ray tracing show that accounting for the non-
unity refractive index in the ionosphere can qualitatively and
quantitatively explain the remainder of the discrepancy between two
instruments.
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Problem formulation
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PHYSICS AND ENGINEERING PHYSICS

What is there to learn from comparing DMSP
with SuperDARN?

J-P St-Maurice, R. Drayton, R. Choudhary, A.
Kustov and S. Bansal




The problem in a nutshell

- Azimuth Difference < 5°
L Vgp = 0.75Vpygp + (-20.59)

1) SuperDARN is
slower by 25
% on average.
Why~»

2) Lots of
scatter. Why?
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Second task: correct for E/B

- Azim mierence < 5°
L Voo @ sp + (-20.59)

. R=0.91
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Significant, as expected: about a 10% improvement in
the slope. However, still bothersome disagreement.
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Is this correct?
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Theoretical analysis
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Doppler shift

B(t)
Aw?® = —ko de + B0 n(B)

=—ky n(B) VhAB (B)

A > A" = Ao™
PO P
@="r, Aw =2k, |n(B)V,” (B)
L, = Tn ds .
y Ginzburg, 1958
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F,=2V. [, =2V, nlA

app
v, =V{n)

Velocity magnitude
1s underestimated!

By how much?
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Rough estimates
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 This is the maximum possible velocity
distortion for the given ratio f ™/ f,.

* However, 1n reality the scattered signal is
formed by the whole scattering volume
covering different altitudes with different n.

V. =0.75-0.90 V.

app ecal

* Also, the scattering process 1s heavily affected
by the aspect conditions.
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Model calculations
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Ray-tracing

» Simple numerical model n sina, = n, sina,
— Parabolic layer
— Flat 1onosphere

— No horizontal gradients

— Constant magnetic field
inclination
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Anisotropic irregularities

| Povimos, Kpasyos u Tamapckuu, 1978
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Scattered power diagram:

flw)= exp{— 21(2(172 —azz)sin2 w}, a=A/2
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Dependence on fluctuation magnitude\‘

In a recent paper, Walker et al. (1987) start with Booker’s expression for
backscatter cross-section

oy = r2{ AN2S P4(2kl, 2km, 2kn), (2.70)

where:

{AN?} = the mean square fluctuation level of the electron density
r, = the classical electron radius = 2.813 x 10™°m
P;(k,,1

» M) = the three-dimensional power spectrum of the irregularities
k = 2n/A = wave number of the transmitted signal,

and derives a general expression for the backscattered power (P,) at the receiver as

| A.G,PggAD
Pr=rz(o,}(° o 4ﬁjg* D) ( p,2k,0,2k¥)d¥, 2.71)

AW

where:
f5(6y) = sin 6/[upf; (0)) sin {6; + (o — ) } ]
f£,(0) = PO the correction factor for focusing

I, = spatial length of radar pulse
A, = effective area of receiving antenna
G, = gain of transmitting antenna
P, = transmitter power output
u, = refractive index at the reflection level
g. = normalized receiving antenna pattern
g, = normalized transmitting antenna pattern

Hunsucker, 1991
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can make...
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Upper and lower rays

Zm = 300 km, H = 130 km, f, = 12.0 MHz, f. = 7.0 MHz
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Conclusions

* By assuming scattering of HF waves at V, = ¢
FITACF underestimates the line-of-sight velocity
magnitude by up to 25%, which causes the same
distortion 1n the electric field magnitude.

« Ray-tracing analysis showed that the average velocity
distortion over most of the range gates 1s close to its
maximum possible magnitude at the electron density
maximum

* As expected, refraction significantly reduces aspect
sensitivity, and the velocity distortion 1s practically
independent on the aspect ratio
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Future directions

* Modification of the radar software to correctly
account for the non-unity refractive index
effect on velocity estimates based on IRI
model estimates of fjp,.

* Development of a more flexible ray-tracing
software accounting for non-uniform
1onosphere, magnetic field and spherical
geometry.
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IRI model (realistic 1onosphere
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