Bistatic observations of large and small scale ULF waves in SPEAR-induced HF coherent backscatter

T. K. Yeoman¹, L. J. Baddeley², R. S. Dhillon¹, T. R. Robinson¹, and D. M. Wright¹

¹Dept. of Physics and Astronomy, University of Leicester, UK ²EISCAT Scientific Association, Kiruna, Sweden

SuperDARN Workshop, 2008

SPEAR capabilities

Generation of artificial field aligned irregularities Active experiments 1:

Generation of artificial coherent backscatter with CUTLASS, and modification effects in the ESR data

SUPERDARN PARAMETER PLOT 22 Feb 2007 (53)

SPEAR-induced scatter

unknown scan mode (-26006)

Power (dB)

Large-scale ULF wave event

SUPERDARN PARAMETER PLOT

SPEAR scatter: Hankasalmi & Þykkvibær: vel

1157 20s

1158 12s

1151 39s

12 Oct 2006

1159 56s

a

70

40

40 10 -20 -50 -80 -110 -140 -140

-170

1159 04s

9

A comparison of measurements at different L-shells

	and the second second	and the second second	The second second	
Study	m	τ (s)	L-shell	Implied proton energy (keV)
This study	60	300	15	10
Grant et al., 1992	~50	~300	7.5	20
Yeoman & Wright, 2001	35	260	6.4	50
Yeoman et al., 1992	20	~400	5	60

Why equatorward propagation? A mystery - high *m* events are observed with a variety of latitudinal propagations. Mann (1988) suggested that the details of the driving mechanism is important in determining this. The answer will have to wait for suitable satellite conjunctions

VT-VI TAM HABEANT

Leicester

Measurements of magnetospheric particle population inversions

(from: Wilson et al.,2006)

Conclusions

- SPEAR-induced HF coherent scatter provides an excellent diagnostic of the electric field perpendicular to B over the ESR
- Structures of scale length ~100 km are imaged accurately by both CUTLASS radars
- Smaller structures are only imaged accurately along the HF radar beam
- Small scale waves, driven by wave-particle interactions are observed even at the high L-shells of Svalbard, and are similar to previous lower latitude observations, but are driven by particle populations of lower energy
- Such particle populations are indeed observed in the magnetosphere above Svalbard

Ŵ

Leicester