

PHYSICS AND ENGINEERING PHYSICS

Estimating index of refraction in the scattering region using SuperDARN angle of arrival measurements

Rob Gillies, Glenn Hussey, George Sofko, J.-P. St. Maurice, and Pasha Ponomarenko

Institute of Space and Atmospheric Studies

Doppler velocities for scattering

- SuperDARN measures the Doppler shift $\Delta \omega_D$ of a transmission at frequency ω .
- The equation that has been assumed relates the measured $\Delta \omega_D$ obtained from the slope of the autocorrelation function phase with lag to the speed v_S of the scatterer by the usual equation

$$\frac{\Delta \omega_{\rm D}}{\omega} = \pm \frac{2 \, v_{\rm S}}{c}$$

Scattering from a refractive medium

 However, when the Doppler shift is obtained from a scatterer located where the refractive index is n_S, then the correct Doppler equation is:

$$\frac{\Delta\omega_{\rm D}}{\omega} = \pm \frac{2\,{\rm v}_{\rm S}}{{\rm c/n}_{\rm S}}$$

• Using the above, we see that the correct speed is given by:

$$v_{\rm S} = \pm \frac{c \, \Delta \omega_{\rm D}}{2 \, \omega} \, \frac{1}{n_{\rm S}}$$

Since n_S < 1.0, the speed is higher than that normally assumed for n_s = 1.0, and can result in substantial corrections (11% for n_S = 0.9, 25% for n_S = 0.8).

Simple example: Index of refraction from Appleton-Hartree Eqn

- Typical peak N_e values in the F-region are from about 10¹¹ – 10¹² m ⁻³
- Assuming a SD transmitter frequency of 10.0 MHz and $N_e = 5 \times 10^{11} \text{ m}^{-3}$, then n_S for the X-mode is about 0.76 (the horizontal linear transmitted polarization state is the X-mode for QT propagation).
- If the scatterers are in a region of strong upward FAC where the electron density may be higher than above, the refractive index could well be lower than 0.76.

Raytracing in a Spherical Geometry

Scattering occurs usually where φ_S is such that the ray is about 90° to the magnetic field lines, and h_S is the height at which that ideal aspect sensitivity **OCCURS.**

University of Saskatchewan

Raytracing showing scatter within 1° of perpendicularity to B (Saskatoon radar)

Ray paths have been evaluated for several 1-D and 2-D profiles. At the blue locations, the scattering is within 1° of perfect aspect sensitivity; the elevation angle and profile n are noted there.

University of Saskatchewan

Profiles Used

- 24 2-D profiles were simulated, as follows:
 - * 8 IRI profiles scaled using the f_0F2 peak values from ISIS 2 topside soundings
 - * 1 from Millstone Hill
 - * 3 direct (unscaled) IRI models
 - * 2 mid-latitude trough models, each at 4 different latitudes
 - * 4 profiles were constructed with high gradients
- 20 different 1-D profiles were generated from IRI
 - * 10 daytime profiles with peaks from 10^{11} to 10^{12} m⁻³
 - * 10 nighttime profiles also scaled to peaks 10¹¹ to 10¹² m⁻³
- A total of 125 different profiles and frequency combinations were used, with simulations done at 9.5, 12.5 and 14.5 MHz

Refractive indices and Elevation Angles (F-region > 150 km and Dip Angle ψ~ 80°)

Statistical Spread of n_s (F-region) weighted mean is 0.905

DMSP – SuperDARN v_s comparison (work in progress)

- Previous studies have indicated that SD values of v_S were about 25% (or more) lower than values measured by DMSP.
- Mapping E/B along the dipole B lines from the F-region (SD) altitudes up to DMSP at 840 km results in an E/B correction of 12-14%.
- Including the refractive index at the scattering height h_s can easily add a further 11-25 % to the SD speed (for n_s of 0.9 to 0.8), bringing the SD values and the DMSP values into good agreement.

Future Work Planned

 EISCAT (and AMISR) – SuperDARN - ISR comparisons (using v and n values from the ISRs)

CADI-SD comparisons

 * CADI makes N_{e} measurements that give the index of refraction profile

*Comparisons of CADI $n_{\rm S}$ with SD elevation angles will be made

SuperDARN sounding mode

* Since $n_{\rm S}$ depends on frequency, and elevation angle also depends on f, the sounding frequency sweeps should reveal the trend of $n_{\rm S}$ with elevation angle

SuperDARN velocity-elevation angle comparison

* a detailed comparison of elevation angles and the velocities measured may reveal more about the relationship between elevation angle and velocity

University of Saskatchewan

Conclusions

- The inclusion of the refractive index at the scattering location will lead to an increase in the inferred v_s values
- The ray-tracings show a reasonably strong and stable dependence of n_S on elevation angle, so a "reasonable guesstimate" of n_S at any time can be made by using the measured SD elevation angles at that time.
- These results lead to much better agreement between DMSP and SuperDARN velocities.

