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Jean-Paul Villain’s impact on my
research
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Overview

My E region interactions with Jean-Paul
— Cyclotron modes or just gradients?

— Slow to ultra slow modes: a pulling of HAIR
echoes?

* Our F region debates
— The great spectral width conundrum

— The interesting anomalies
* Narrow fast spectra
 Divergent F region echoes: oh la Ia!
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Some of our E region debates
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The great E region cyclotron debate

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 92, NO. All, PAGES 12327-12342, NOVEMBER 1, 1987

HF Radar Observations of £ Region Plasma Irregularities
Produced by Oblique Electron Streaming

J. P. VILLAIN', R. A. GREENWALD, K. B. BAKER, AND J. M. RUOHONIEMI
Applied Physics Laboratory, The Johns Hopkins University, Laurel, Maryland

Data obtained with the Applied Physics Laboratory HF radar located in Goose Bay, Labrador, have been
used to determine the characteristic features of high-latitude ionospheric irregularities at decameter wavelengths.
In this paper, we descnbe a set of four events exhibiting particular characteristics. These observations took
place in the postmidnight sector at E region altitudes. The scanning capabilities of the radar indicated that
arclike regions of irregularities were moving approximately along L contours with a drift velocity of the order
of 200 m/s or less. For periods of a few minutes to a few tens of minutes, localized regions of irregularities
exhibiting high Doppler velocities (350 to 650 m/s) and large signal to noise ratios appeared within the radar
arcs. Among the high Doppler velocity signals, two distinct types have been identified. Both types can be pres-
ent simultaneously. One type is distributed between 320 and 550 m/s and has an average value of 445 m/s,
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the lower of the high-velocity signals to be the ion acoustic vdm:lt}r C;, the higher velocity can be interpreted
as electrostatic ion cyclotron (EIC) waves produced by NO * ions. These EIC waves follow perfectly the dis-

percion relation establiched from the fluid annroximation wo= 0 4+ ;:2 -.._.,!' The radar achnss with low
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was operative at the top of the E layer. We sumt that m.agneur.' field-aligned drifts combined with the sub-
critical perpendicular electron drifts are responsible for the production of both the EIC waves and the ion

acoustic waves that were observed.
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Fig. 7. Example of transition between both kinds of high Doppler ve-
locities observed as looking along a single beam. The absolute value of
the velocity is plotted as a function of range from the radar for the select-
ed beam. Range gates are separated by 30 km. The conventions to plot
the velocity with its error and the half-power are the same as for Figures
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Fig. 9. Ratio between the velocity observed on each side of the gaps,
plotted as a function of the lower velocity, assumed to be C;. The theo-
retical ratio computed for k¥ = 0.46 (A = 13.75 m, radar frequency =
10.9 MHz) is plotted for O* and NO* ions. Excellent agreement is ob-
served between the experimental data points and the NO™ theoretical
curve, Theoretical curves for N;* and O would be similar and very close
to the NO* curve.

| had 2 problems
with this:

1) Should these
modes not be
Doppler shifted

by the plasma
drift to the point of
not being
recognizable?

2) Cyclotron modes
In a collisional
medium seemed
counterintuitive

sult strongly supports our hypothesis that the lower of the University of

high-velocity waves is associated with ion acoustic modes. It also
indicates that high velocities are associated with NO* EIC waves.
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Gradients as an alternative to cyclotron

modes
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Figure 3. Multiple spectral types observed by a a0~
MHz cw experiment during a campaign that took place
in August 1951.

Gradients
could explain
triple spectra
the
connection
between

their Doppler
shifts and
their radar
wavelength
dependence
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We had a
tie:

both
theoretical

Interpreta-
tions did
well
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The mysterious very slow E region

modes

Obliquely Propagating Ion Acoustic Waves in the Auroral E Region:
Further Evidence of Irregularity Production by Field-Aligned Electron Streaming

J.-P. VILLAIN
Laboratoire de Physique et Chimie de I'Environnement, Centre National de la Recherche Scientifique, Orleans, France

C. HANUISE
Laboratoire de Sondages Electromagnetiques de I'Environnement Terrestre, Centre National de la Recherche Scientifique, Universite de Toulon, France

R. A, GREENWALD, K. B. BAKER, AND J. M, RUOHONIEMI
The Jokns Hopkins University Applied Physics Laboratory, Laurel, Maryland
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Question raised by
Jean-Paul and
coauthors: why a
mix of very slow

modes and much
faster ones?
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ol KLVl + RV > (1 + WG, jjj Answer proposed: a
’ current convective
5¢, - y Instability.
el N Problems:
g Vic =Vioos 8+Vir sind 1- that’s a lot of
3 C; — t
(14¥)6 current over
2, - widespread areas
(hundreds of micro
“ gl  amp/m”2)
AT | ! | l
0 1 > 3 B 5 . 2- It seems to me
8 (deg) that the Doppler shift
Fm’ﬁ; _mmimnrmmummnrmm-mﬁ should have been
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tion of the off-perpendicular angle, #. For the straight line a subcritical
perpendicular electron-ion drift, V', = 0.5 C,, is assumed and the par- Cs

allel electron-ion drift is taken to be ¥; = 40 C,. As the off- : ;
perpendicular angle increases the threshold condition for instability is met UnlverS|ty of §& X
and then exceeded (shaded region). Saskatchewan @x
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Fig. 8. Parallel electron-ion drift velocity required to destabilize the plasma
through the ion acoustic instability as a function of ky/k | . The x-axis
is also scaled as a function of the off-perpendicular angle, #. The curve
for ¥, = 300 m/s illustrates the threshold condition for a direction in
which the perpendicular electron-ion drift is 300 m/5. The curve for V',
= 0 m/s gives the drift velocity required to produce irregularities in the
absence of a perpendicular electron-ion drift or in the direction orthogo-
nal to both B and V¥, for any value of V, .
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Enter the HAIR echoes

e Jean-Paul showed me the work to see
what I'd think: it was in his mind totally
related to his 1990 paper
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at HE-[}EE 11'11 an aspect Sensitivity as
low as 1 dB dﬁg : Tl'lE:SE: E-::‘lltZJ-E:E are distinguished from nor-
mal electrojet backscatter by having low Doppler shifts with

[erms oI the linear Ulﬂ'i}f}" ﬂlSpEl’SlDIl relanon for EIE{'LL"D_]E!I
Waves.
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Fig. 12. Doppler shift as a function
of L-shell anele for two examples from
the westward electrojet (a) and (b) and
two from the eastward electrojet (¢) and
(d). MNormal echoes are indicated in
black, HAIR echoes in red. Superim-
! | posed blue curves show rough expec- N
B00L . e e I — — tations for eastward or westward flow, %
o 80 120 . 180 o 50 120 . 180 whereas the green curves show pole- 5
L—shell angle, @ L—shell angle, & i
ward or equatorward flow.
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Origin of Hair echoes

Proposal by Milan et al:
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k 1s the wave vector, V, and V; are the electron and ion drift
velocities given by
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The need for a modified explanation

* Since the aspect angle is large, the

expressions used for the frequencies
were incorrect

 Still had to find a source for the large
amplitude of the waves at the inferred
large aspect angles
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What we proposed

e The growth of 10 m waves is slow and
the instabllity Is convective

* The derivative of the aspect angle can
become infinite in the convective
description

* When the derivative becomes infinite
the waves crash and feed damped zero
frequency modes
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When modes with large aspect angle derivatives and large
aspect angles are fed to the system the lower altitude solutions
are purely damped modes moving with the ions

wl(wh +ivi) —kjci 20 (0)

We find the solution to be that of a damped harmonic oscil-
lator, namely,
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We also had fun with the F region
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The great F region spectral shape
debate (with Hanuise and
Gresillon as co-conspirators)

e Lorentzian, Gaussian, in between?

* \What's the meaning of the width?
— Lifetime of a structure? If so
e Ordinary diffusion?
 Weak turbulence? (Lorentzian)
e Turbulent diffusion? Self similar or not?

— Superposition of narrow features with
different Doppler velocities?

— Turbulence In the driver itself?
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What if one
approach could be

to understand the
origin of individual
structures and use
self-similarity to
understand the
spectra?

(Work by Moorcroft
explaining why
spectra are neither
Lorentzian nor

Gaussian)
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Figure 2. Values of n, obtained by fitting with an
exponential power law (equation (2)) the ACF magnitude
(equations (13) and (14)) of the scatterer model
(equation (12)) shown at the top of the figure. The curves
arc contours of constant »..



The great divergent F region
echoes puzzle

(Raphael Andre as co-conspirator)
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TOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. AY, PAGES 20,899-20,908, SEPTEMBER 1, 2000

Super Dual Auroral Radar Network observations of velocity-
divergent structures in the F region ionosphere

R. André, J.-P. Villain, and V. Krassnosel’skikh
Laboratoire de Physigue et Chimie de 1'Environnement, Centre National de la Recherche Scientifique
Orléans, France

(. Hanuise
Laboratoire de Sondage de I Environnement Electromagnétigue Terreswre, Centre National de la Recherche
Scientifique, Université de Toulon et du Var, La Garde, France

Abstract. This paper describes Super Dual Auroral Radar Network observations of an
unusual mesoscale (scale size L == 300 km) structure in the auroral convection pattern. This
structure is characterized by an expansion motion of the plasma in a plane perpendicular
to the magnetic tield and then by an anomalously high velocity divergence. This study
describes those observations and eliminates possible artifacts in the data analysis. Because
the radar data strongly suggest that the structure is located in the F region, the observations
are thus in opposition with the well-known divergence-free motion hypothesis. They are
interpreted in terms of an ion demagnetization process, in which the collisionless ions
hecome locally collisional in the F region.
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If the effective collision frequency becomes larger than
Wh at th ey S a| d lF'II._'- 1o E_}-'J'1'_'}1"'l'l.'.‘.'-q1l.l.l':l'l1'.'.}", the m'm:-|':‘1ailr::uus lTiI]'IS]_".Ii'_'.Il."[ 'ij.{_‘..J'I'li-IE_:,I-JE-—
- tizes the trapped 1ons. The electric hield fluctuations modify
the trapped particle behavior, but their macroscopic motions
are still defined by the macroscopic electric field projected
from the magnetosphere. Such a process can demagnetize
the F region ions and induce a highly divergent flow in a
plane perpendicular to the magnetic ficld.

e Trouble with the explanation: F region would
look like E region. However, instabilities do

not diverge In the E region!

« Alternate explanation (which took years):
fingers grow from the center of a vortex.
Divergence is seen when strong fingers grow
on the original fingers.
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The secondary fingers propagate at right angles from each
other with a slightly skewed symmetry with respect to the
primary fingers

The orientation of the secondary fingers nicelyrighabler =&
SuperDARN to detect Vortices Saskatchewan s>




Interesting F region features we

worked on while | was visiting on
sabbatical
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The
event
also had

a strange
region of
very

narrow
fast

moving
echoes
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The narrow echoes:

1.

Are the first F region
echoes

Are at higher elevation
angles than other F
region echoes

Are inside of very near
a region of strong
shears

Are on the edge of
more powerful F region
echoes

Are very clean highly
coherent features
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The point of all this

Jean-Paul had a knack to zoom in on key
problems and to present them clearly

He was impressive with instrument building,
with data analysis and with theoretical
understanding

He threw good challenges for us all to deal
with. Collaboration was always in his mind.

He was a lot of fun to interact with and he
was a caring very good friend
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How |
remember the
man:

Playful yet

driven. But
above all, a
good friend.




