Double Pulse Operations with SuperDARN

SuperDARN Workshop Newcastle, Australia 2008 2nd June 2008

Authors: J.D. Borderick¹, T.K. Yeoman¹, A.S. Yukimatu² and D.M. Wright¹

1 Department of Physics & Astronomy, University of Leicester, University Road, Leicester, England 2 National Institute of Polar Research, 9-10, Kaga1-chome, Itabashi-ku, Tokyo, Japan

- Standard SuperDARN Mode
- Motivation for the Double Pulse Technique
- Emulated Double Pulse Technique
- TMS Raw times series Analysis
- Experimental Double Pulse Technique
- OPreliminary Results
- Conclusions
- Further Work

Correspondence to: jdb23@ion.le.ac.uk SuperDARN Workshop, Australia. 1st -6th June 2008 SuperDARN-Standard Radar Mode Pulse sequence and calculated lags 300 µs 2400 µs 26 27 0 12 22 9 20 Lag Pulses 0 0-0 26-27 1 2 20-22 3 9-12 22-26 4 5 22-27 20-26 6 7 20-27 8 12-20 9 0-9 10 12-22 11 9-20 12 0-12 13 9-22 14 12-26 15 12-27 16 missing 17 9-26 9-27 18 19 missing 20 0-20 21 missing 22 0-22 23 missing 24 missing 25 missing 26 0-26 27 0-27 University of Leicester

Correspondence to: jdb23@ion.le.ac.uk SuperDARN Workshop, Australia. 1st -6th June 2008 SuperDARN-Standard Radar Mode (b)

- The top panel shows the complex ACF measured along beam 3 at range gate 59 at 11:21:06 UT on 24th November 1998 by the SuperDARN radar at Pykkvibaer Iceland
- The middle panel shows the phase of the ACF

 The lower panel shows the normalised power spectrum (black line) obtained from the FFT of the ACF

University of

Leicester

Autocorrelation function and spectrum

SuperDARN Workshop, Australia. 1st -6th June 2008

The two modes

- The SuperDARN 7 Pulse Scheme
- Each pulse is 300µs long and are separated by the multi pulse increment of 2400µs.

SUPERDARN PARAMETER PLOT

CUTLASS: STANDARD AND A THREE DOUBLE PULSE SEQUENCE

SuperDARN Workshop, Australia. 1st -6th June 2008

The two modes

- The SuperDARN 7 Pulse Scheme
- Each pulse is 300µs long and are separated by the multi pulse increment of 2400µs.
- Lower panel shows the Double Pulse scheme
- We can effectively increase the temporal resolution by 3x and still maintain the same range resolution
- No definitive lag zero power

SUPERDARN PARAMETER PLOT

CUTLASS: STANDARD AND A THREE DOUBLE PULSE SEQUENCE

SuperDARN Workshop, Australia. 1st -6th June 2008

The two modes

- The SuperDARN 7 Pulse Scheme
- Each pulse is 300µs long and are separated by the multi pulse increment of 2400µs.
- Lower panel shows the Double Pulse scheme
- We can effectively increase the temporal resolution by 3x and still maintain the same range resolution
- No definitive lag zero power
- We could increase the temporal resolution by a factor of 4 but we would lose some range gates at the higher end

SUPERDARN PARAMETER PLOT

CUTLASS: STANDARD AND A FOUR DOUBLE PULSE SEQUENCE

Double Pulse Mode Formula

• The Doppler Velocity

$$V_{\text{doppler}} = \frac{C}{4\pi f_{rad}} \frac{d\phi}{dt}$$

$$V_{\text{DoublePulse}} = \frac{C}{4\pi f_{rad}} \frac{\phi_2 - \phi_1}{t_2 - t_1}$$

Where the phase isWith only two lags points...

$$\phi = \tan^{-1} \left(\frac{\mathrm{Im}}{\mathrm{Re}} \right)$$

(1)

(2)

(3)

University of

eicester

SuperDARN Workshop, Australia. 1st -6th June 2008

Standard Radar Mode Double Pulse Emulation

Radio a

We can see here
The DPV plotted vs.
SuperDARN fit
Velocity

SUPERDARN PARAMETER PLOT

30 May 2006 ⁽¹⁵⁰⁾ to 31 May 2006 ⁽¹⁵¹⁾

University of

eicester

SuperDARN Workshop, Australia. 1st -6th June 2008

Standard Radar Mode Double Pulse Emulation

Radio a

We can see here The DPV plotted vs. SuperDARN fit Velocity

SUPERDARN PARAMETER PLOT

30 May 2006 ⁽¹⁵⁰⁾ to 31 May 2006 ⁽¹⁵¹⁾

SuperDARN Workshop, Australia. 1st -6th June 2008

30 May 2006

Standard Radar Mode Double Pulse Emulation

We can see here The DPV plotted vs. SuperDARN fit Velocity Notice the good correlation for the **Ionospheric scatter**

Radio a Ph

SuperDARN Workshop, Australia. 1st -6th June 2008

30 May 2006

Standard Radar Mode Double Pulse Emulation

• We can see here The DPV plotted vs. SuperDARN fit Velocity Notice the good correlation for the **Ionospheric scatter**

Radio a Ph

SUPERDARN PARAMETER PLOT

SuperDARN Workshop, Australia. 1st -6th June 2008

SuperDARN Workshop, Australia. 1st -6th June 2008

Emulated Double Pulse Velocity for Ground Scatter

TMS Motivation

Clearly, fitacf will not work for our double pulse experiment

- To develop a "double pulse" technique we require all the I&Q sample returns.
- Hence, we utilise, TMS (Yukimatu et al., 2002) data
- Adapt the raw time series analysis for study of our system
- Does not degrade the normal SuperDARN ACF observations
- We may want to understand high time resolution phenomena...

Experimental Double Pulse

 A double pulse operational campaign with CUTLASS observing Tromsø heater scatter on 6th March 2008.

Narrow width

Single region of powerful backscatter

SuperDARN Workshop, Australia. 1st -6th June 2008

Example SuperDARN Standard Fit Data SUPERDARN PARAMETER PLOT (66) 6 Mar 2008 unknown scan mode (-6401) THE THREE MAIN RTI PARAMETERS 40 Beam5 35 24 Power (dB 18 30 25 40 Beam5 35 gate Velocity (ms⁻¹) Range 30 Uni 25

¢

June 2008

ta

University of

eicester

SuperDARN Workshop, Australia. 1st -6th June 2008

TMS Comparison with fitacf

Radio a

We see that 66 integrated TMS ACFs (in this case) yield a result that is almost identical to the Fitacf routine.

- Integrating removes noise BUT does this process remove interesting data?
- Ideally, with good data we can use non-integrated TMS double pulse data.

SuperDARN RAW Data Plot TMS Mode 6 Mar 2008 (66)

unknown scan mode (-6401)

SUPERDARN PARAMETER PLOT A THREE DOUBLE PULSE SEQUENCE

SuperDARN TMS Power Plot

Hankasalmi: Various Power Comparisons

SuperDARN TMS Velocity Plot

6 Mar 2008

17

14

11

5

2

-1

-4

-7

Velocity (ms⁻¹)

Conclusions- Emulation Double Pulse

- Firstly, we investigated a comparison between the standard SuperDARN fit velocity and the calculated DPV
- We demonstrated that while the DPV can yield results similar to the SuperDARN Fit velocity, it really has to be run in conjunction with the standard mode
- The DPV method yields an impressive data set for the ionospheric scatter, however, the DPV method struggles with ground scatter due to a noise issue. (i.e. Slow plasma convection velocities)

Conclusions- Experimental Double Pulse

- We have also conducted a preliminary investigation into the workings of TMS data from SuperDARN
- We have shown that a direct integration of individual ACFs (each 100ms pulses) yields a result almost identical to the standard ACF from fitacf
- Our results of the double pulse technique demonstrate that double pulse requires high ionospheric convection velocities to be an effective measurement tool.
- However, we have shown a proof of concept that the general method works and we can, to a certain degree, increase our temporal resolution by a factor of three.
- And we can deconvolve the power returns such that we can form a reasonable lag zero power...

University of Leicester

Future Work

 Perform analysis of other TMS Double pulse intervals using the raw time series analysis technique.

