First Results of Imaging, Super Stereo, and Other Upgrades on the Kodiak Radar

GENERATE

R. Todd Parris, W. A. Bristow, S. Shuxiang, and J. Spaleta SuperDARN Workshop, June 2, 2008

Recent Hardware Upgrades

- September, 2007
 - New DIO system
 - New Timing System
 - Separated timing critical signals like 'ScopeSync', 'T/R', 'TX', etc, from non timing critical signals like 'Test Mode', 'ACG fault', 'LowPwr', etc.
 - GPS triggering
 - Not currently working, GPS computer/card has problems
 - Direct Digital Synthesis up-converters
- Last week, May 2008
 - Imaging receivers
- Kodiak radar is now all digital

New DIO system

- Access PCI-DIO-48/48S
 - 48 Bits of I/O
 - 32 bits for new phasing matrix
 - 13 bits for beam codes
 - 13 bits for programming beam codes
 - 5 bits for addressing cards
 - 1 bit to enable beam code programming
 - 8 bits for standard DIO operations
 - 4 bits for addressing transmitters
 - 4 bits for control and status of transmitters (T/R, TM, LP, AGC)
 - 4 bits for old phasing matrix
 - We still use old phasing matrix in Kodiak for some experiments
- Driver written under QNX Neutrino 6.3
 - TCP message passing for communication with ROS
- Running since September, 2007

New Timing System

- ADLink NuDAQ PCI-7300A 80MB Ultra High Speed 32-CH Digital I/O Board
 - 32 bit, 33 MHz PCI card
 - Time critical signals only
 - Signals: 'Atten', 'T/R', 'TX', 'ScopeSync', Phase', and 'FIFO almost empty'
 - 16kSample deep FIFO
 - Driver written to continually load arbitrarily long timing sequences
 - Unpacked timing sequence state time of 1µs
 - Clocks DIO states at set rate
 - External 10 MHz clock used
 - Requires modification of the card
 - Driver written under QNX Neutrino 6.3
 - TCP message passing to communicate with ROS
- Running since September, 2007

GPS Triggering

- Symmetricom GPS-PCI 2U (formerly a True Time product)
- GPS accuracy to better than 1µs
- Driver written under QNX Neutrino 6.3
 - TCP message passing to communicate with ROS
 - Sets system time on all computers via NTP
 - Provides scheduled triggering of Tx and Rx
 - Can be scheduled for arbitrary start times
 - Can be set as GPS synchronized rate trigger
 - Provides <1µs accurate record of triggering
 - 10 MHz GPS synchronized reference for Tx, Rx, and timing ε_nals
- Ran from September 2007 through January 2008
 - Computer and/or GPS card crashed
 - Will be reinstalled as soon as card/computer can be fixed
- Permits extremely accurately synchronized experiments with HAARP
- Permits calculation of lags between pulse sequences

Direct Digital Synthesis Up-Converters

- Four ICS-660B DDS Cards
 - Four digital-to-analog converters
 - Four GC4116 digital up-converter chips per card
 - Four independent up converter channels per chip, one chip per DAC
 - 64 total DDS channels, four per Tx antenna
 - Permits 'super stereo' Tx
 - Full TX waveform control
- Drivers written under QNX Neutrino 6.3
 - TCP message passing to communicate with ROS
- In operation since September 2007

Some benefits of DDS on each antenna

- Phase coding
 - Binary, Quadrature, etc.
 - Phase coding modes have already been run for extended times
- Adaptive beam forming
 - Work in progress
 - Shown to work in lab
 - S. Shuxiang currently working on implementing adaptive beam forming on the Kodiak radar
 - Adapt Tx beam to ionospheric and noise condition to maximize observations (both temporally and spatially)
 - Image within TX beam for high spatial resolution measurements

DDS/Digital Receiver interface hardware

- New hardware interfaces the receivers and DDS up-converters with amps, filters, and antennas
- Couplers allow direct sampling and characterization of the TX signal

Beam direction verification

- Verification of DDS Beam directions vs.
 Phasing matrix
 - Phasing matrix still connected and used for some experiments
 - A number of transmitters were not working, and have subsequently been fixed

Digital Imaging Receivers

- For our implementation, we have chosen the Echotek GC314-PCI/FS
 - 3 analog inputs and A/Ds
 - 100 MHz sampling
 - 4 receiver channels per antenna
 - Allows 'super stereo'
 - Up to 2 MHz BW per channel
 - 7 GC314s total
- 1021 sample FIFOs on each channel
 - Can only move 12 MB/sec off of these cards over PCI bus, which limits our achievable continuous sample rate
 - Less than 150 kS/s for single channel
 - Less than 75 kS/s for double channel
 - Less than 38 kS/s for quad channel
 - Can collect up to 1021 samples at any rate up to 2 MS/s
 - Still uses old GC214-PCI/TS with phasing matrix for some experiments
 - Currently using GC214 and phasing matrix for clear frequency search
- Sample DDS signals directly (via coupler)

Digital Imaging

- Sample all antennas simultaneously
- Take FFT across array to get Bartlett estimation of brightness distribution

$$S_k(t) = \sum_{n=0}^{15} s_n(t) e^{-\frac{2\pi}{N}ink} \quad k=0,...,N-1$$

- This is the digital analog of Using phasing matrix for many Directions at the same time
- Use some other spectral estimation to get higher resolution brightness distribution
 - Yule-Walker
 - Modified Co-variance
 - MUSIC
 - Many others....

One of the first image from Kodiak

First Images

- These are very preliminary results
- Imaging receivers just installed last week
- Radar parameters for images shown here;
 - Normalsound-fast
 - 10.4-10.7 MHz band
- TX beam shown is signals provided to transmitter
 - Actual TX signal depends on state of transmitters
 - Data shown was collected after all transmitters were fixed and calibrated

Higher resolutions

- Other brightness distribution estimators can be used to increase azimuthal resolution
- Modified covariance estimator is shown
- Others;
 - Yule-Walker
 - MUSIC
 - De-convolutions
 - Etc.
- Achievable resolution is determined by SNR, not antennas

Interesting Images

Super Stereo

- One new capability of having four DDS up-converters and four digital receiver channels on each antenna is the ability to run multiple radar channels
 - Have written and tested code for Stereo operation (two channels), using the code from the Blackstone radar as a basis
 - Works in lab
 - has yet to be run on radar
 - Started ROS framework for four channels
 - This is intended to support HAARP, where we typically have very strong backscatter
 - Departing from time interleaving of TX pulses
 - Transmitting multiple frequencies in single pulses
 - Ultimately intend to have truly independent radar channels (different pulse sequences, phasing, etc.)

Questions?