E-region decameter-scale plasma waves observed by the dual TIGER HF radars

Brett A. Carter

Roman A. Makarevich

Department of Physics, La Trobe University Victoria, 3086, Australia

SuperDARN Workshop, Newcastle NSW, Australia, 1-6 June 2008

image NASA © 2008 Europa Technologies Map data © 2008 DMapas/El Mercurio © 2008 MapData Sciences FtyLtd, PSMA

Outline

Introduction:

- **TIGER experimental setup**
- Echo type predictions

Spatial occurrence:

- **Morning-evening comparison**
- Storm-time echo occurrence patterns

Echo types at HF:

- Spectral width versus velocity plots
- Dependence on geomagnetic activity
- Storm-time echo population
- **Summary and Conclusions**

Aspect Angle

Experimental setup

Echo Types

Morning-evening comparison

Carter and Makarevich, submitted to Ann. Geophys. 2008

Storm-time patterns

Ionosonde measurements confirmed that the curved feature is present during storms when there is a plasma density depletion (negative storm phase)

Spectral plots

of secondary generation...?

Storm-time dependence

Short-range population first reported at HF by *Milan et al* [2001] and then further investigated experimentally by *Milan et al* [2004]

Short-range echoes

Note the sudden decrease in V^H (disappearance of HAIR echoes) as V^F goes below ~ 600 m/s.

Indication that high E fields are needed to generate irregularities at such high aspect angles

Summary and Conclusions

- 1. <u>A curved band of E-region echoes</u> was observed in the evening sector
 - with similar curvature to those of geometric aspect angle lines
 - during storms when plasma density was depleted
- 2. <u>Two populations of the E-region echoes</u> were identified and associated with Types I and II
 - Unwin observed far less high-velocity echoes (Type-Ilike) than Bruny
 - Type-I-like echoes did not have preferential direction of observations; possibly generated via a nonlinear mechanism
- 3. <u>A separate population of HF echoes was observed during</u> <u>storms</u>
 - including Type-II-like echoes and
 - backscatter at close ranges and constant velocities (similar to HAIR echoes reported previously)
 - HAIR-like echoes are associated with high E fields

Image NASA © 2008 Europa Technologies Map data © 2008 DMapas/El Mercurio © 2008 MapData Sciences PtyLtd, PSMA

Google

THE END