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Artificially induced FAIls by EISCAT Tromso heating
facility observed with CUTLASS Finland & Iceland East

SuperDARN radars and EISCAT Tromso UHF radar
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Motivation
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Are heater induced FAIls spread over the
region just silently and "flatly"? or lots of or
some limited number of "soliton-like" FAIs

are created and decayed frequently /

D) JOMOd

repeatedly like "bubbles"” in boiling water in a
kettle? or mixture of them, or something
very different? ---- still unknown (Terry sazid)

= try to contribute to theory/models




To obtain finer structure
of FAI echoes

in range direction:

°* _OVeErs amphng (for single discrete

target)

* pulse/phase coding

- (additiona o authority license might required)




(Dual freq) FDI
(Frequency Domain Interferometer)

Use (Af~kHz)
Infer fine range location within a range cell
using by dual freq observation

f1 /1 range bin freq difference
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High Range Res. Meteor ODbs. by

Dual Freq FDI  (rutumi etal so ws 2004)
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An Example of Multi-freq FDI obs.
incase of ST radar stratosphere obs

Capon Range Brightness Palmer et al.,
! Radio Sci, 2001.

4-freq FDI
echo Power by
ST radar.

original
rsep=300m

W IR "% 4 [ FDI resolved
i i . B BN much thinner
N : turbalence

N frequencies layer structures
may resolve within range

up to (N-1) targets cells




Spatial Domain Interferometer(beam forming)

° Fourier Method
(=Conventional beam forming)
with Phasing Matrix (delay lines)

o phase shift + plo{ in power

N\R N\R
TYTYY  \7TTI]

% Output M




Spatial Domain Interferometer(beam forming)

° Capon Method
(Adaptive beam forming)
System Model
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Capon’s Algorithm

- Statement
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Basic Characteristics of
Fourier & Capon Beampattern

o Instantaneous beampatterns

by Fourier Method

. Beampattern (Fourier) / ) Beampattern (Capon) /
undesired __----- undesired RS ,

wave N\ wave N\’

—~ —~

undesired input is cancelled

(This principle is also employed for clutter cancellation)



° Capon Method

o Images to given 3 point sources

by Fourier Method by Capon Method

|
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o Resolution depends on S/N



® System in Frequency Domain: FDI

o Same principle can be applied to

" EDI & SDI are .,

Freq 1 ! Angular
-2l — Mathematically |G
Freq 3 . -~ Angle
o equivalent! o
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o Frequency & (3HGe
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SDI "initial phase” determination

In case of SDI (adaptive beam forming using
multiple antennas and multiple Rxs), Tx pulse is

Phase
Shift

transmitted from all the antennas "simultaneously" {£hasing

(without any time differences (or with well-defined
time delay in phasing matrix)), and all the "phase
differences" among all the Tx paths inside the
radar H/W (including phasing matrix) can be
measured in advance and thus are well defined.

This means that, in case of SDI, there is NO
"Initial phase" ambiguity among each Tx-Rx paths
(inside radar H/W), and then angular power
distribution can be determined (i.e., "beams" can
accurately be formed) without any ambiguity

(so SDI should work w/o problem!).

Only phase distribution (angular space image)
seen from the radar can be known. But real target
distribution might not be known due to unknown
and temporally varying radio wave propagation
paths outside the radar H/W.
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FDI "initial phase"” determination

in case of FDI, each FDI frequency are transmitted separately
(at different timings, normally sequentially).

So the initial phase offset for each Tx frequency (ultimately at
DDS synthesizer) are random and cannot be determined /
measured / controlled easily inside the radar H/W level.

for FDI to work properly (i.e., for FDI to produce meaningful
solution (or "beams" in SDI) for echo power distribution or range
imaging), "initial (relative) phase" (at a certain time) among the
FDI frequencies (i.e., for each FDI frequency against other FDI
frequencies) must be determined (in case of # of freq >=3). This
provides the real solution (range power distribution) except
absolute range offset (<range bin (15km)).

If initial phase cannot be determined, it is like a radar whose
phasing matrix has random and unknown phase-shifts so it is
difficult/impossible to form any proper beams...



FDI "initial phase"” determination

* FDI method does NOT provide the absolute range offset
(i.e., absolute range power distribution within a range bin). It
can be determined from, e.g., characteristics of continuity of
echo range distribution over ranges.
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FDI "initial phase"” determination

« To determine FDI "initial phase”, near-range meteor echoes
are thought to be able to be used as they are well-known
and simple targets. Especially for cases of # of FDI freq >=3,
relative initial phase can be determined so that the
consequent power distribution in a range bin observing a
meteor has just a sharp single peak corresponding the
single meteor target. . ]
) | ' | | e
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FDI "initial phase"” determination

Last year, authors tried to do this for 5-freq FDI and the FDI
"Initial phases” could be determined without any problem.

HOWEVER, the initial phases obtained from a near-range
meteor echo could NOT be used for further range FDI data
analysis, probably because of different radio wave propagation
paths for each FDI frequencies and/or those temporal variation.

So as the "last resort", initial phases were determined from the
far target (artificial FAls) echoes themselves assuming that
there is only one distribution peak in a range bin at a certain
observation time. (This assumption was well-grounded from
detail investigation of time variation of I/Q or power/phase
data.) Another assumption of constant initial phases long
enough over the observation period could provide the
meaningful time variation of range image (\Was it lucky?).

But there are no reason that propagation paths are always
constant and then initial phases does not change over time...
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SD.Multi-Freq EDI Rande Imadging lnitial. Results (Capon)
Integ every 5 sec. no overlap (all independent)
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more improved version of FDI?

To obtain the results done last year, 5-sec period of data are
required to get one stable fine resolution image.

This was partly because frequency was unchanged during
each pulse sequence of ~100msec to obtain conventional
ACFs without problem, and thus one cycle of FDI frequency
scan took about 0.5 sec for 5-freq FDI. Also longer
"Integration” was thought to be required partly and possibly
also because the FAIs' echo powers were highly temporally
varying and also had long correlation time.

To improve the temporal resolution, it's the best to reduce the
time to complete each FDI frequency scan.

Therefore, we made our mind to move from multi-pulse
observation to single (or double) pulse scheme to reduce the
time for each FDI cycle. To make sure not to be contaminated
by cross range noise, IPP was set to ~20msec (3000km).

We cannot use fitacf for this mode but we can do any
preferable spectral analysis using TMS |IQ data.




deceive fitacf...;-)

% Fitacf was a bit modified to show us lag0pwr as lambda power so

that echo power can be seen for real-time checking...
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High Res. Temporal Pwr variation for freqs

~10Hz
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High Res. Temporal Pwr variation for freqs
~10Hz SENSU SuperDARN Raw Time Series Plot
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_ong duration Doppler Power
Spectrum using any length of long
period (say, every 10 sec) of data
to obtain much finer freq resol.,

why not?
To obtain Power Spectrum with

TMS Unequally spaced time series,

just do the simple & primitive way..

Z(t,)=1(t,)+1Q(t,)

S(0)=g4 Z(t)*exp(-ioty)
PS(@)=IS(@)I




High Res. Dynamic Power Spectrum
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Hi_gh Res. Dynamic Power Spectrum
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Hi_gh Res. Dynamic Power Spectrum
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Freq#4
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High Res.

Dynamic Power Spectrum
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Heating experiment this time
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High Res. Temporal Pwr variation for freqs
~10Hz SENSU SuperDARN Raw Time Series Plot
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High Res. Temporal Pwr variation for freqs

~10Hz
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ngh Res. Dynamic Power Spectrum
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Hi_gh Res. Dynamic Power Spectrum

ChA Dop pl=yF [H=]
Freq#2

Average
Doppler Power

5

15

!

R (TG ;
) ‘h-"i:'..l-l- I N | ] ]
VPrET, Hﬂf ‘ 5 Tﬂhﬁ{i-_ t. o, ] :
. | f} :.'rl"' "I"- 44

|

I




High Res. Dynamic Power Spectrum
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ngh Res. Dynamic Power Spectrum
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High Res. Dynamic Power Spectrum
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| results (for a worse case)

min.entropy applied only at t=0, & rest uses the same initial phases
2008/03/07 11:08-11:09
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"entropy of echo power (scatter) distribution”

* more highly localized distribution has less entropy
(in case of a constant integral value)

Entropy of distributions

|

(s2]

information entropy (H)

H = /P(a:) log P(x)dx

5.94

]
T

/

P(x) : range power distribution ,|




minimum entropy solution
of unknown eigen (initial) phases

« determinable except relative range offset
(which does no effects on entropy)

True Image (H=4.13)
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minimum entropy solution
of unknown eigen (initial) phases

* even in case that multiple targets exist, this method
provides correct solutions

There exists no mathematical proof of its unigness of the solution yet! but we believe so!;-)
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FDI "initial phase"” determination

Again, there are no reason that propagation paths are always
constant and then initial phases does not change over time
especially for further ranges... (but FDI will work if relative initial
phase differences among FDI frequencies are preserved, but
still relative range offset might vary with time.)

So trying "minimum entropy" method might be valuable
at least to determine initial phase at a certain time
(assuming the method always gives us correct distribution..).

To confirm whether FDI works well or not, ....

1) to check whether the results from both stereo radar channels
are the same or consistent

2) to compare results assuming that relative initial phase
differences are preserved, with results with all initial phases are
determined by the "minimum entropy" method at every time
(FDI integ periods) (range offset must be set for each time).
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Summary this time (1/2)

A new code for Single- (and double-) pulse TMS mode with
multi-frequency FDI was developed and tested to improve or
investigate temporal resolution of range imaging by FDI method.
(The resolution was improved from 5-sec to ~1.5sec per image.)

FDI range imaging analysis requires determination of "initial
phase" to get proper results in principle (<=> SDI not).

The "initial phase" determination is sometimes or often fairly
difficult for far range echo analysis most possibly due to fading
effects (or different or multiple ray paths for different frequencies
and their temporal variation).

In fact, Dynamic Doppler Power Spectrum and temporal echo
power variation for several close FDI frequencies (~kHz) show
sometimes very different behaviors, suggesting the existence of
the fading effects — never non-negligible for investigating finer
structure than ever... (BE CAREFUL!!;-)



Summary this time (2/2)

"Minimum entropy" method is tried to be applied to determine
the "initial phases” of artificial FAls at a far range (except
absolute initial range offset) (though its uniqueness of the
solution and the mathematical or physical truth is not proved).

FDI results from both stereo channels using "minimum entropy”
method seem to be relatively consistent (more fine tuning will be
required at this stage) and thus it seems to work even when
other trial fails is suspicious.

Still work in progress..., more detailed comparison will be
continued hopefully...

For range imaging for ionospheric far range echoes,
pulse/phase coding might be more promising though additional
radio authority license issues might arise. (c.f. FDI nees no cost
(only software), no additional hardware, and no additional
license, and highest resolution could be expected if S/N ratio is
enough high. so it'll be good if it works well.)



Many thanks...!
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