Statistical field-aligned current maps determined from SuperDARN HF radar measurements of ionospheric vorticity

Gareth Chisham, Mervyn Freeman, Gary Abel

British Antarctic Survey, Cambridge, UK

SuperDARN Workshop 2008

Motivation

Measurements of ionospheric plasma vorticity have been used as a proxy for the magnetic field-aligned currents (FACs) that dynamically couple the magnetosphere to the ionosphere.

- How good a proxy is vorticity for field-aligned current?
- What can we learn from comparing statistical patterns of vorticity and field-aligned current?
- Does studying spatiotemporal variations in vorticity help understand magnetosphere-ionosphere coupling?

Talk Outline

- Introduce new method for vorticity determination.
- Test validity of method by studying statistical variations of vorticity with AACGM latitude, magnetic local time, season and interplanetary magnetic field direction.
- Compare these results with previous field-aligned current measurements.

Vorticity and Field-Aligned Current

 The field-aligned current J_{//} can be written in terms of the E×B drift velocity v as,

$$J_{\parallel} = \Sigma_{P} \mathbf{B} \cdot (\nabla \times \mathbf{v}) + (\mathbf{v} \times \mathbf{B}) \cdot \nabla \Sigma_{P} + |\mathbf{B}| \mathbf{v} \cdot \nabla \Sigma_{H}$$

• In the limit of uniform ionospheric conductances, the field-aligned current is proportional to the vorticity $\nabla \times \mathbf{v}$,

$$\boldsymbol{J}_{\parallel} = \boldsymbol{\Sigma}_{P} \mathbf{B} \cdot (\nabla \times \mathbf{v})$$

Vorticity Determination Technique

NATURAL ENVIRONMENT RESEARCH COUNCIL

 We use Stokes theorem to estimate the vorticity (∇xV)

$$\oint_C \mathbf{V}.\mathbf{dl} = \int_S (\nabla \times \mathbf{V}).\mathbf{dS}$$

- The quadrilateral defined by overlapping beams from adjacent radars represents a closed loop *C*, enclosing surface *S*, of area *A*.
- Similar method to *Sofko et al. (1995)* but the use of line-of-sight velocities rather than MERGE or Map Potential velocity vectors means fewer assumptions and limitations.

Compilation of Database

- Determined all vorticities for 6 years of common mode data (2000-2005) from three northern hemisphere SuperDARN radar pairs.
- Determined the average vorticity from this data set in 1° and 1-hr MLT bins.
- Negative (positive) vorticity is equivalent to an upward (downward) field-aligned current.

Global Average Vorticity Variation

- The statistical pattern of vorticity closely resembles the previouslyreported average field-aligned current pattern.
- Region 2 currents at lowest latitudes (<70°).
- Region 1 currents at higher latitudes (~70°-80°).
- NBZ/Region 0 currents at highest latitudes (>80°).

Vorticity Distribution Variation with AACGM Latitude and MLT

- The distributions of measured vorticity are very wide and non-Gaussian.
- The average vorticity maps don't portray the range of vorticity values observed in any one region.

Average Vorticity Variation with Season

Average Vorticity Variation with Season

Average vorticity between 72° and 77° AACGM latitude – centre of region 1 current system

- Previous studies have concluded that the peak dayside region 1 FAC is ~2 times greater in the summer hemisphere than the winter hemisphere.
- The average vorticity measurements show a similar result suggesting that this difference is not solely a result of seasonal differences in the Pedersen conductance but that there are seasonal differences in the electric field intensity.

Average Vorticity Variation with Season

- Previous studies have reported that the dayside currents in the summer hemisphere are located at ~1°-3° higher latitude than in the winter hemisphere.
- Our peak average vorticity variations around dawn and dusk show the opposite variation with season.
- We presently have no explanation for these differences.

- Only SuperDARN data from halfhour intervals within which 70% of Weimer-mapped IMF data from the ACE spacecraft falls within a certain IMF direction bin are used.
- The vorticity regions relating to the Region 1 and Region 2 currents (and the Region 1 and Region 0 currents) merge in the dayside ionosphere in the form of a spiral, but not in the nightside ionosphere.
- There is a clear high-latitude twocell vorticity pattern in the dayside ionosphere for northward IMF

- The vorticity maps are almost identical to the statistical FAC maps measured by Anderson et al.(2008).
- All these maps show a clear symmetry with IMF *By* and reproduce all the expected current regions for different IMF directions.

SuperDARN vorticity

Weimer (2001) DE-2 B-field data

SuperDARN vorticity

Antarctic Survey

Anderson et al.(2008) Iridium B-field data

Summary

- Developed a new method for determining ionospheric vorticity from overlapping SuperDARN data.
- Average vorticity maps reproduce the average field-aligned current patterns.
- Larger average vorticities are measured in the dayside ionosphere in the summer hemisphere than in the winter hemisphere suggesting that this difference is not solely a result of seasonal differences in conductance.
- The vorticity maps show a clear symmetry with IMF B_y and reproduce all the expected current regions for different IMF directions.

